

Python threaded IMAP4 client module imaplib2

Contents:

	Library Reference
	version()

	IMAP4 Objects

	Usage

	References

This module defines a class, IMAP4, which encapsulates a threaded
connection to an IMAP4 server and implements the IMAP4rev1 client
protocol as defined in RFC 3501 with several extensions. This module
presents an almost identical API as that provided by the standard python
library module imaplib, the main difference being that this version
allows parallel execution of commands on the IMAP4 server, and
implements the IMAP4rev1 IDLE extension. (imaplib2 can be
substituted for imaplib in existing clients with no changes in the
code, but see the caveat below.)

An IMAP4 instance is instantiated with an optional host and/or
port. The defaults are localhost and 143 - the standard
IMAP4 port number.

There are also five other optional arguments:
debug=level, debug_file=file, identifier=string, timeout=seconds, debug_buf_lvl=level.
Setting debug level (default: 0) to anything above
debug_buf_lvl (default: 3) causes every action to be printed to
file (default: sys.stderr). Otherwise actions are logged in a
circular buffer and the last 20 printed on errors. The third argument
provides a string to be prepended to thread names - useful during
debugging (default: target host). The forth argument sets a timeout for
responses from the server, after which the instance will abort. Note
that this timeout is overridden by an IDLE timeout when active.

Caveat: Once an instance has been created, the invoker must call the
logout method before discarding it, to shut down the threads.

There are two classes derived from IMAP4 which provide alternate
transport mechanisms:

	IMAP4_SSL
	IMAP4 client class over an SSL connection.

	IMAP4_stream
	IMAP4 client class over a stream.

There are also 2 utility methods provided for processing IMAP4 date
strings:

	Internaldate2Time(datestr)
	Converts an IMAP4 INTERNALDATE string to Universal Time. Returns
a time module tuple.

	Time2Internaldate(date_time)
	Converts date_time (a time module tuple, or an integer or
float seconds) to an IMAP4 INTERNALDATE representation. Returns a
string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMM" (including double-quotes).

And there is one utility method for parsing IMAP4 FLAGS responses:

	ParseFlags(response)
	Convert an IMAP4 flags response (a string of the form
"...FLAGS (flag ...)") to a python tuple..

IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name

Each command returns a tuple: (type, [data, ...]) where type is
usually 'OK' or 'NO', and data is either the text from the
command response (always true when type is 'NO'), or mandated
results from the command. Each data is either a string, or a tuple.
If a tuple, then the first part is the header of the response, and the
second part contains the data (ie: literal value).

Any logical errors raise the exception class
<instance>.error("<reason>"). IMAP4 server errors raise
<instance>.abort("<reason>"), which is a sub-class of error.
Mailbox status changes from READ-WRITE to READ-ONLY raise
<instance>.readonly("<reason>"), which is a sub-class of abort.
Note that closing the instance and instantiating a new one will usually
recover from an abort.

All commands take two optional named arguments: callback and
cb_arg. If callback is provided then the command is asynchronous
(the IMAP4 command is scheduled, and the call returns immediately), and
the result will be posted by invoking callback with a single
argument:

or, if there was a problem:

Otherwise the command is synchronous (waits for result). But note that
state-changing commands will both block until previous commands have
completed, and block subsequent commands until they have finished.

All (non-callback) arguments to commands are converted to strings,
except for authenticate, and the last argument to append which
is passed as an IMAP4 literal. If necessary (the string contains any
non-printing characters or white-space and isn’t enclosed with either
parentheses or double quotes or single quotes) each string is quoted.
However, the password argument to the login command is always
quoted.

If you want to avoid having an argument string quoted (eg: the flags
argument to store) then enclose the string in parentheses (eg:
(\Deleted)). If you are using sequence sets containing the
wildcard character ‘*’, then enclose the argument in single quotes: the
quotes will be removed and the resulting string passed unquoted.

To summarise the quoting rules:

	a string is automatically quoted if it contains at least one of the
IMAP4 atom-special characters with the following exceptions:

	the password argument to the login command is always quoted;

	a string enclosed in "..." or (...) is passed as is;

	a string enclosed in '...' is stripped of the enclosing single
quotes and the rest passed as is.

Note also that you can pass in an argument with a type that doesn’t
evaluate to basestring (eg: bytearray) and it will be converted to
a string without quoting.

There is one instance variable, state, that is useful for tracking
whether the client needs to login to the server. If it has the value
"AUTH" after instantiating the class, then the connection is
pre-authenticated (otherwise it will be "NONAUTH"). Selecting a
mailbox changes the state to be "SELECTED", closing a mailbox
changes back to "AUTH", and once the client has logged out, the
state changes to "LOGOUT" and no further commands may be issued.

There is another instance variable, capabilities, that holds a list
of the capabilities provided by the server (the same as the list
returned by the IMAP4 CAPABILITY command).

An IMAP4 instance has the following methods:

	append(mailbox, flags, date_time, message)
	Append message to named mailbox. All args except message can be
None

	authenticate(mechanism, authobject)
	Authenticate command - requires response processing.
mechanism specifies which authentication mechanism is to be used -
it must appear in <instance>.capabilities in the form
AUTH=mechanism.
authobject must be a callable object:

It will be called to process server continuation responses. It should
return data that will be encoded and sent to the server. It should
return None if the client abort response * should be sent
instead.

	capability()
	Return server IMAP4 capabilities.

	check()
	Checkpoint mailbox on server.

	close()
	Close currently selected mailbox. Deleted messages are removed from
writable mailbox. This is the recommended command before LOGOUT.

	copy(message_set, new_mailbox)
	Copy message_set messages onto end of new_mailbox.

	create(mailbox)
	Create new mailbox.

	delete(mailbox)
	Delete old mailbox.

	enable(capability)
	Send an RFC5161 enable string to the server. EG: ask the server to
enable UTF-8 message encoding:

if 'ENABLE' in imapobj.capabilities:
 imapobj.enable("UTF8=ACCEPT")

	enable_compression()
	Ask the server to start compressing the connection. Should be called
from user of this class after instantiation, as in:

if 'COMPRESS=DEFLATE' in imapobj.capabilities:
 imapobj.enable_compression()

	examine(mailbox=’INBOX’)
	Select a mailbox for READ-ONLY access. Flush all untagged responses.
Returned data is count of messages in mailbox (EXISTS response).
Mandated responses are
'FLAGS', 'EXISTS', 'RECENT', 'UIDVALIDITY', so other responses
should be obtained by calling response('FLAGS') etc.

	expunge()
	Permanently remove deleted items from selected mailbox. Generates an
EXPUNGE response for each deleted message. Returned data contains a
list of EXPUNGE message numbers in order received.

	fetch(message_set, message_parts)
	Fetch (parts of) messages. message_parts should be a string of
selected parts enclosed in parentheses, eg: "(UID BODY[TEXT])".
Returned data are tuples of message part envelope and data,
followed by a string containing the trailer.

	getacl(mailbox)
	Get the Access Control Lists for a mailbox.

	getannotation(mailbox_name, entry_specifier, attribute_specifier)
	Retrieve ANNOTATIONS.

	getquota(root)
	Get the quota root’s resource usage and limits. (Part of the IMAP4
QUOTA extension defined in RFC2087.)

	getquotaroot(mailbox)
	Get the list of quota roots for the named mailbox.

	id(field1, value1, …)
	IMAP4 ID extension: exchange information for problem analysis and
determination. NB: a single argument is assumed to be correctly
formatted and is passed through unchanged (for backward compatibility
with earlier version). The ID extension is defined in RFC 2971.

	idle(timeout=None)
	Put server into IDLE mode until server notifies some change, or
timeout (secs) occurs [default: 29 minutes], or another IMAP4
command is scheduled.

	list(directory='""', pattern='*')
	List mailbox names in directory matching pattern. Returned data is
list of LIST responses.

	login(user, password)
	Identify client using plaintext password. The password argument
will be quoted.

	login_cram_md5(user, password)
	Force use of CRAM-MD5 authentication.

	logout()
	Shutdown connection to server. Returns server BYE response. NB: You
must call this to shut down threads before discarding an instance.

	lsub(directory='""', pattern='*')
	List subscribed mailbox names in directory matching pattern.
Returned data are tuples of message part envelope and data.

	myrights(mailbox)
	Show my Access Controll Lists for mailbox (i.e. the rights that I
have on mailbox).

	namespace()
	Returns IMAP namespaces per RFC2342.

	noop()
	Send NOOP command.

	partial(message_num, message_part, start, length)
	Fetch truncated part of a message. Returned data is tuple of
message part envelope and data. NB: obsolete.

	pop_untagged_responses()
	(Helper method.) Generator for obtaining untagged responses. Returns
and removes untagged responses in order of reception. Use at your own
risk! (Removing untagged responses required by outstanding commands
may cause errors.)

	proxyauth(user)
	Assume authentication as user. (Allows an authorised administrator
to proxy into any user’s mailbox.)

	recent()
	(Helper method.) Return RECENT responses if any exist, else prompt
server for an update using the NOOP command. Returned data is
None if no new messages, else list of RECENT responses, most
recent last.

	rename(oldmailbox, newmailbox)
	Rename old mailbox name to new.

	response(code)
	(Helper method.) Return data for response code if received, or
None. Response value is cleared. Returns the given code in place of
the usual type.

	search(charset, criterium, …)
	Search mailbox for matching messages. Returned data contains a
space separated list of matching message numbers.

	select(mailbox=’INBOX’, readonly=False)
	Select a mailbox. Flush all untagged responses. Returned data is
count of messages in mailbox (EXISTS response). Mandated responses
are 'FLAGS', 'EXISTS', 'RECENT', 'UIDVALIDITY', so other
responses should be obtained by calling response('FLAGS') etc.

	setacl(mailbox, who, what)
	Set the Access Control Lists for a mailbox.

	setannotation(mailbox_name, entry, attribute_value[, entry, attribute_value]*)
	Set ANNOTATIONS.

	setquota(root, limits)
	Set the quota root’s resource limits.

	sort(sort_criteria, charset, search_criteria, …)
	IMAP4rev1 extension SORT command.

	starttls(keyfile, certfile, ca_certs, cert_verify_cb, ssl_version=”ssl23”, tls_level=”tls_compat”)
	Start TLS negotiation as per RFC 2595. If non-null, cert_verify_cb
will be called to verify the server certificate, with peer
certificate and hostname as parameters. If cert_verify_cb returns a
non-null response, an SSL exception will be raised with the response
as reason. starttls should be called from user of the IMAP4 class
after instantiation, as in:

if 'STARTTLS' in imapobj.capabilities:
 imapobj.starttls()

The recognized values for tls_level are:

tls_secure: accept only TLS protocols recognized as “secure”
tls_no_ssl: disable SSLv2 and SSLv3 support
tls_compat: accept all SSL/TLS versions

status(mailbox, names)

Request named status conditions for mailbox.

store(message_set, command, flag_list)

Alters flag dispositions for messages in mailbox.

subscribe(mailbox)

Subscribe to new mailbox.

thread(threading_algorithm, charset, search_criteria, …)

IMAP4rev1 extension THREAD command.

uid(command, arg, …)

Execute command arg ... with messages identified by UID, rather than
message number. Returns response appropriate to command.

unsubscribe(mailbox)

Unsubscribe from old mailbox.

xatom(command, arg, …)

Allow simple extension commands as notified by server in CAPABILITY
response. Returns response appropriate to command.

IMAP4 instances have a variable, PROTOCOL_VERSION, that is set
to the most recent supported protocol in the CAPABILITY response.

Usage

Here is a minimal example (without error checking) that opens a mailbox
and retrieves and prints all messages:

def cb(cb_arg_list):
 response, cb_arg, error = cb_arg_list
 typ, data = response
 if not data:
 return
 for field in data:
 if type(field) is not tuple:
 continue
 print('Message %s:\n%s\n'
 % (field[0].split()[0], field[1]))

import getpass, imaplib2
M = imaplib2.IMAP4()
M.LOGIN(getpass.getuser(), getpass.getpass())
M.SELECT(readonly=True)
typ, data = M.SEARCH(None, 'ALL')
for num in data[0].split():
 M.FETCH(num, '(RFC822)', callback=cb)
M.CLOSE()
M.LOGOUT()

Note that IMAP4 message numbers change as the mailbox changes, so it is
highly advisable to use UIDs instead via the UID command.

At the end of the module, there is a test section that contains a more
extensive example of usage.

References

Documents describing the protocol, and sources and binaries for servers
implementing it, can all be found at http://www.washington.edu/imap.

Indices and tables

	Index

	Module Index

	Search Page

Library Reference

	
imaplib2.version(use_tuple=False)

	Return the version of this module, either as a single string (the default) or a tuple
of major_version, minor_version as integers

	Parameters

	use_tuple (bool) – Whether to return tuple

	Returns

	The version of this library, the format depends on the value of use_tuple

	Return type

	(int, int) if use_tuple

	Return type

	str otherwise

Index

 V

V

 	
 	version() (in module imaplib2)

 nav.xhtml

 Table of Contents

 		
 Python threaded IMAP4 client module imaplib2

 		
 Library Reference

 		
 version()

_static/plus.png

_static/file.png

_static/minus.png

